负载均衡

负载均衡笔记

(1) 负载均衡算法

(2) 应用负载均衡策略

(2.1) nginx负载均衡策略

轮询、权重、ip哈希、fair(第三方)、url_hash(第三方)

轮询

每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。

upstream backserver {
    server 192.168.0.14;
    server 192.168.0.15;
}

权重

指定轮询几率,weight和访问比率成正比,用于后端服务器性能不均的情况。

upstream backserver {
    server 192.168.0.14 weight=3;
    server 192.168.0.15 weight=7;
}

ip哈希

采用ip_hash指令解决这个问题,如果客户已经访问了某个服务器,当用户再次访问时,会将该请求通过哈希算法,自动定位到该服务器。
每个请求按访问ip的hash结果分配,这样每个访客固定访问一个后端服务器,可以解决session的问题。

upstream backserver {
    ip_hash;
    server 192.168.0.14:88;
    server 192.168.0.15:80;
}

fair(第三方)

按后端服务器的响应时间来分配请求,响应时间短的优先分配。

upstream backserver {
    server server1;
    server server2;
    fair;
}

url_hash(第三方)

按访问url的hash结果来分配请求,使每个url定向到同一个(对应的)后端服务器,后端服务器为缓存时比较有效。

upstream backserver {
    server squid1:3128;
    server squid2:3128;
    hash $request_uri;
    hash_method crc32;
}

(2.2) dubbo负载均衡策略

算法 特性 备注
RandomLoadBalance 加权随机 默认算法,默认权重相同
RoundRobinLoadBalance 加权轮询 借鉴于 Nginx 的平滑加权轮询算法,默认权重相同,
LeastActiveLoadBalance 最少活跃优先 + 加权随机 背后是能者多劳的思想
ShortestResponseLoadBalance 最短响应优先 + 加权随机 更加关注响应速度
ConsistentHashLoadBalance 一致性 Hash 确定的入参,确定的提供者,适用于有状态请求

(2.2.1) RandomLoadBalance 加权随机

 假设我们有一组服务器 servers = [A, B, C],他们对应的权重为 weights = [5, 3, 2],权重总和为10。现在把这些权重值平铺在一维坐标值上,[0, 5) 区间属于服务器 A,[5, 8) 区间属于服务器 B,[8, 10) 区间属于服务器 C。接下来通过随机数生成器生成一个范围在 [0, 10) 之间的随机数,然后计算这个随机数会落到哪个区间上。

 RandomLoadBalance 也存在一定的缺点,当调用次数比较少时,Random 产生的随机数可能会比较集中,此时多数请求会落到同一台服务器上。

public class RandomLoadBalance extends AbstractLoadBalance {

    public static final String NAME = "random";

    private final Random random = new Random();

    @Override
    protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
        int length = invokers.size();
        int totalWeight = 0;
        boolean sameWeight = true;
        // 下面这个循环有两个作用,第一是计算总权重 totalWeight,
        // 第二是检测每个服务提供者的权重是否相同
        for (int i = 0; i < length; i++) {
            int weight = getWeight(invokers.get(i), invocation);
            // 累加权重
            totalWeight += weight;
            // 检测当前服务提供者的权重与上一个服务提供者的权重是否相同,
            // 不相同的话,则将 sameWeight 置为 false。
            if (sameWeight && i > 0
                    && weight != getWeight(invokers.get(i - 1), invocation)) {
                sameWeight = false;
            }
        }
        
        // 下面的 if 分支主要用于获取随机数,并计算随机数落在哪个区间上
        if (totalWeight > 0 && !sameWeight) {
            // 随机获取一个 [0, totalWeight) 区间内的数字
            int offset = random.nextInt(totalWeight);
            // 循环让 offset 数减去服务提供者权重值,当 offset 小于0时,返回相应的 Invoker。
            // 举例说明一下,我们有 servers = [A, B, C],weights = [5, 3, 2],offset = 7。
            // 第一次循环,offset - 5 = 2 > 0,即 offset > 5,
            // 表明其不会落在服务器 A 对应的区间上。
            // 第二次循环,offset - 3 = -1 < 0,即 5 < offset < 8,
            // 表明其会落在服务器 B 对应的区间上
            for (int i = 0; i < length; i++) {
                // 让随机值 offset 减去权重值
                offset -= getWeight(invokers.get(i), invocation);
                if (offset < 0) {
                    // 返回相应的 Invoker
                    return invokers.get(i);
                }
            }
        }
        
        // 如果所有服务提供者权重值相同,此时直接随机返回一个即可
        return invokers.get(random.nextInt(length));
    }
}

(2.2.2) LeastActiveLoadBalance 最小活跃数

活跃调用数越小,表明该服务提供者效率越高,单位时间内可处理更多的请求。此时应优先将请求分配给该服务提供者。
在具体实现中,每个服务提供者对应一个活跃数 active。初始情况下,所有服务提供者活跃数均为0。每收到一个请求,活跃数加1,完成请求后则将活跃数减1。

public class LeastActiveLoadBalance extends AbstractLoadBalance {

    public static final String NAME = "leastactive";

    private final Random random = new Random();

    @Override
    protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
        int length = invokers.size();
        // 最小的活跃数
        int leastActive = -1;
        // 具有相同“最小活跃数”的服务者提供者(以下用 Invoker 代称)数量
        int leastCount = 0; 
        // leastIndexs 用于记录具有相同“最小活跃数”的 Invoker 在 invokers 列表中的下标信息
        int[] leastIndexs = new int[length];
        int totalWeight = 0;
        // 第一个最小活跃数的 Invoker 权重值,用于与其他具有相同最小活跃数的 Invoker 的权重进行对比,
        // 以检测是否“所有具有相同最小活跃数的 Invoker 的权重”均相等
        int firstWeight = 0;
        boolean sameWeight = true;

        // 遍历 invokers 列表
        for (int i = 0; i < length; i++) {
            Invoker<T> invoker = invokers.get(i);
            // 获取 Invoker 对应的活跃数
            int active = RpcStatus.getStatus(invoker.getUrl(), invocation.getMethodName()).getActive();
            // 获取权重 - ⭐️
            int weight = invoker.getUrl().getMethodParameter(invocation.getMethodName(), Constants.WEIGHT_KEY, Constants.DEFAULT_WEIGHT);
            // 发现更小的活跃数,重新开始
            if (leastActive == -1 || active < leastActive) {
            	// 使用当前活跃数 active 更新最小活跃数 leastActive
                leastActive = active;
                // 更新 leastCount 为 1
                leastCount = 1;
                // 记录当前下标值到 leastIndexs 中
                leastIndexs[0] = i;
                totalWeight = weight;
                firstWeight = weight;
                sameWeight = true;

            // 当前 Invoker 的活跃数 active 与最小活跃数 leastActive 相同 
            } else if (active == leastActive) {
            	// 在 leastIndexs 中记录下当前 Invoker 在 invokers 集合中的下标
                leastIndexs[leastCount++] = i;
                // 累加权重
                totalWeight += weight;
                // 检测当前 Invoker 的权重与 firstWeight 是否相等,
                // 不相等则将 sameWeight 置为 false
                if (sameWeight && i > 0
                    && weight != firstWeight) {
                    sameWeight = false;
                }
            }
        }
        
        // 当只有一个 Invoker 具有最小活跃数,此时直接返回该 Invoker 即可
        if (leastCount == 1) {
            return invokers.get(leastIndexs[0]);
        }

        // 有多个 Invoker 具有相同的最小活跃数,但它们之间的权重不同
        if (!sameWeight && totalWeight > 0) {
        	// 随机生成一个 [0, totalWeight) 之间的数字
            int offsetWeight = random.nextInt(totalWeight);
            // 循环让随机数减去具有最小活跃数的 Invoker 的权重值,
            // 当 offset 小于等于0时,返回相应的 Invoker
            for (int i = 0; i < leastCount; i++) {
                int leastIndex = leastIndexs[i];
                // 获取权重值,并让随机数减去权重值 - ⭐️
                offsetWeight -= getWeight(invokers.get(leastIndex), invocation);
                if (offsetWeight <= 0)
                    return invokers.get(leastIndex);
            }
        }
        // 如果权重相同或权重为0时,随机返回一个 Invoker
        return invokers.get(leastIndexs[random.nextInt(leastCount)]);
    }
}

2.2.3 ConsistentHashLoadBalance 一致性哈希

 1、根据 ip 或者其他的信息为缓存节点生成一个 hash,并将这个 hash 投射到 [0, 232 - 1] 的圆环上。
 2、当有查询或写入请求时,则为缓存项的 key 生成一个 hash 值。然后查找第一个大于或等于该 hash 值的缓存节点,并到这个节点中查询或写入缓存项。
 3、如果当前节点挂了,则在下一次查询或写入缓存时,为缓存项查找另一个大于其 hash 值的缓存节点即可。

public class ConsistentHashLoadBalance extends AbstractLoadBalance {

    private final ConcurrentMap<String, ConsistentHashSelector<?>> selectors = 
        new ConcurrentHashMap<String, ConsistentHashSelector<?>>();

    @Override
    protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
        String methodName = RpcUtils.getMethodName(invocation);
        String key = invokers.get(0).getUrl().getServiceKey() + "." + methodName;

        // 获取 invokers 原始的 hashcode
        int identityHashCode = System.identityHashCode(invokers);
        ConsistentHashSelector<T> selector = (ConsistentHashSelector<T>) selectors.get(key);
        // 如果 invokers 是一个新的 List 对象,意味着服务提供者数量发生了变化,可能新增也可能减少了。
        // 此时 selector.identityHashCode != identityHashCode 条件成立
        if (selector == null || selector.identityHashCode != identityHashCode) {
            // 创建新的 ConsistentHashSelector
            selectors.put(key, new ConsistentHashSelector<T>(invokers, methodName, identityHashCode));
            selector = (ConsistentHashSelector<T>) selectors.get(key);
        }

        // 调用 ConsistentHashSelector 的 select 方法选择 Invoker
        return selector.select(invocation);
    }
    
    private static final class ConsistentHashSelector<T> {...}
}
private static final class ConsistentHashSelector<T> {

    // 使用 TreeMap 存储 Invoker 虚拟节点
    private final TreeMap<Long, Invoker<T>> virtualInvokers;

    private final int replicaNumber;

    private final int identityHashCode;

    private final int[] argumentIndex;

    ConsistentHashSelector(List<Invoker<T>> invokers, String methodName, int identityHashCode) {
        this.virtualInvokers = new TreeMap<Long, Invoker<T>>();
        this.identityHashCode = identityHashCode;
        URL url = invokers.get(0).getUrl();
        // 获取虚拟节点数,默认为160
        this.replicaNumber = url.getMethodParameter(methodName, "hash.nodes", 160);
        // 获取参与 hash 计算的参数下标值,默认对第一个参数进行 hash 运算
        String[] index = Constants.COMMA_SPLIT_PATTERN.split(url.getMethodParameter(methodName, "hash.arguments", "0"));
        argumentIndex = new int[index.length];
        for (int i = 0; i < index.length; i++) {
            argumentIndex[i] = Integer.parseInt(index[i]);
        }
        for (Invoker<T> invoker : invokers) {
            String address = invoker.getUrl().getAddress();
            for (int i = 0; i < replicaNumber / 4; i++) {
                // 对 address + i 进行 md5 运算,得到一个长度为16的字节数组
                byte[] digest = md5(address + i);
                // 对 digest 部分字节进行4次 hash 运算,得到四个不同的 long 型正整数
                for (int h = 0; h < 4; h++) {
                    // h = 0 时,取 digest 中下标为 0 ~ 3 的4个字节进行位运算
                    // h = 1 时,取 digest 中下标为 4 ~ 7 的4个字节进行位运算
                    // h = 2, h = 3 时过程同上
                    long m = hash(digest, h);
                    // 将 hash 到 invoker 的映射关系存储到 virtualInvokers 中,
                    // virtualInvokers 需要提供高效的查询操作,因此选用 TreeMap 作为存储结构
                    virtualInvokers.put(m, invoker);
                }
            }
        }
    }
}
public Invoker<T> select(Invocation invocation) {
    // 将参数转为 key
    String key = toKey(invocation.getArguments());
    // 对参数 key 进行 md5 运算
    byte[] digest = md5(key);
    // 取 digest 数组的前四个字节进行 hash 运算,再将 hash 值传给 selectForKey 方法,
    // 寻找合适的 Invoker
    return selectForKey(hash(digest, 0));
}

private Invoker<T> selectForKey(long hash) {
    // 到 TreeMap 中查找第一个节点值大于或等于当前 hash 的 Invoker
    Map.Entry<Long, Invoker<T>> entry = virtualInvokers.tailMap(hash, true).firstEntry();
    // 如果 hash 大于 Invoker 在圆环上最大的位置,此时 entry = null,
    // 需要将 TreeMap 的头节点赋值给 entry
    if (entry == null) {
        entry = virtualInvokers.firstEntry();
    }

    // 返回 Invoker
    return entry.getValue();
}

(2.2.4) RoundRobinLoadBalance 加权轮询负载均衡的实现

 轮询是指将请求轮流分配给每台服务器。假设我们有三台服务器 A、B、C。我们将第一个请求分配给服务器 A,第二个请求分配给服务器 B,第三个请求分配给服务器 C。这个过程就叫做轮询。
 加权轮询:比如服务器 A、B、C 权重比为 5:2:1。那么在8次请求中,服务器 A 将收到其中的5次请求,服务器 B 会收到其中的2次请求,服务器 C 则收到其中的1次请求。

public class RoundRobinLoadBalance extends AbstractLoadBalance {

    public static final String NAME = "roundrobin";

    private final ConcurrentMap<String, AtomicPositiveInteger> sequences = 
        new ConcurrentHashMap<String, AtomicPositiveInteger>();

    @Override
    protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
        // key = 全限定类名 + "." + 方法名,比如 com.xxx.DemoService.sayHello
        String key = invokers.get(0).getUrl().getServiceKey() + "." + invocation.getMethodName();
        int length = invokers.size();
        // 最大权重
        int maxWeight = 0;
        // 最小权重
        int minWeight = Integer.MAX_VALUE;
        final LinkedHashMap<Invoker<T>, IntegerWrapper> invokerToWeightMap = new LinkedHashMap<Invoker<T>, IntegerWrapper>();
        // 权重总和
        int weightSum = 0;

        // 下面这个循环主要用于查找最大和最小权重,计算权重总和等
        for (int i = 0; i < length; i++) {
            int weight = getWeight(invokers.get(i), invocation);
            // 获取最大和最小权重
            maxWeight = Math.max(maxWeight, weight);
            minWeight = Math.min(minWeight, weight);
            if (weight > 0) {
                // 将 weight 封装到 IntegerWrapper 中
                invokerToWeightMap.put(invokers.get(i), new IntegerWrapper(weight));
                // 累加权重
                weightSum += weight;
            }
        }

        // 查找 key 对应的对应 AtomicPositiveInteger 实例,为空则创建。
        // 这里可以把 AtomicPositiveInteger 看成一个黑盒,大家只要知道
        // AtomicPositiveInteger 用于记录服务的调用编号即可。至于细节,
        // 大家如果感兴趣,可以自行分析
        AtomicPositiveInteger sequence = sequences.get(key);
        if (sequence == null) {
            sequences.putIfAbsent(key, new AtomicPositiveInteger());
            sequence = sequences.get(key);
        }

        // 获取当前的调用编号
        int currentSequence = sequence.getAndIncrement();
        // 如果最小权重小于最大权重,表明服务提供者之间的权重是不相等的
        if (maxWeight > 0 && minWeight < maxWeight) {
            // 使用调用编号对权重总和进行取余操作
            int mod = currentSequence % weightSum;
            // 进行 maxWeight 次遍历
            for (int i = 0; i < maxWeight; i++) {
                // 遍历 invokerToWeightMap
                for (Map.Entry<Invoker<T>, IntegerWrapper> each : invokerToWeightMap.entrySet()) {
					// 获取 Invoker
                    final Invoker<T> k = each.getKey();
                    // 获取权重包装类 IntegerWrapper
                    final IntegerWrapper v = each.getValue();
                    
                    // 如果 mod = 0,且权重大于0,此时返回相应的 Invoker
                    if (mod == 0 && v.getValue() > 0) {
                        return k;
                    }
                    
                    // mod != 0,且权重大于0,此时对权重和 mod 分别进行自减操作
                    if (v.getValue() > 0) {
                        v.decrement();
                        mod--;
                    }
                }
            }
        }
        
        // 服务提供者之间的权重相等,此时通过轮询选择 Invoker
        return invokers.get(currentSequence % length);
    }

    // IntegerWrapper 是一个 int 包装类,主要包含了一个自减方法。
    private static final class IntegerWrapper {
        private int value;

        public void decrement() {
            this.value--;
        }
        
        // 省略部分代码
    }
}

假设我们有三台服务器 servers = [A, B, C],对应的权重为 weights = [2, 5, 1]。接下来对上面的逻辑进行简单的模拟。
mod = 0:满足条件,此时直接返回服务器 A
mod = 1:需要进行一次递减操作才能满足条件,此时返回服务器 B
mod = 2:需要进行两次递减操作才能满足条件,此时返回服务器 C
mod = 3:需要进行三次递减操作才能满足条件,经过递减后,服务器权重为 [1, 4, 0],此时返回服务器 A
mod = 4:需要进行四次递减操作才能满足条件,经过递减后,服务器权重为 [0, 4, 0],此时返回服务器 B
mod = 5:需要进行五次递减操作才能满足条件,经过递减后,服务器权重为 [0, 3, 0],此时返回服务器 B
mod = 6:需要进行六次递减操作才能满足条件,经过递减后,服务器权重为 [0, 2, 0],此时返回服务器 B
mod = 7:需要进行七次递减操作才能满足条件,经过递减后,服务器权重为 [0, 1, 0],此时返回服务器 B
经过8次调用后,我们得到的负载均衡结果为 [A, B, C, A, B, B, B, B],次数比 A:B:C = 2:5:1,等于权重比。当 sequence = 8 时,mod = 0,此时重头再来。

References

[1] nginx负载均衡
[2] dubbo负载均衡
[3] dubbo负载均衡源码